Mechanical Characteristics of Tailings in Different Depositional Zones: A Case Study of Caijiagou Tailings Pond in Shaanxi, China

Author:

Zhang Longfei1ORCID,Hu Zaiqiang1ORCID,Li Hongru1ORCID,She Haicheng23ORCID,Qin Qiuxiang4ORCID,Wang Xiaoliang1ORCID

Affiliation:

1. Institute of Geotechnical Engineering, Xi’an University of Technology, Xi’an 710048, China

2. School of Urban Construction, Yangtze University, Jingzhou 434032, China

3. Key Laboratory of Reservoir and Dam Safety Ministry of Water Resources, Nanjing 210024, China

4. Xi’an Engineering Investigation and Design Research Institute of China National Nonferrous Metals Industry Co. Ltd., Xi’an 710054, China

Abstract

This study examines the widespread practice of upstream tailings dam construction in metallurgical mines in China, conducting comprehensive testing and research on tailings from various depositional zones of the Caijiagou tailings pond. Analysis of the test results from three types of tailings reveals a systematic relationship between the mechanical characteristics of tailings and their depositional zones: the farther from the dam, the finer the tailings particles, categorized as silty clay tailing, silt tailing, and sandy silt tailing. Consistent patterns were observed in the consolidated-drained shear strength and consolidated-undrained effective shear strength of these tailings. Among these, sandy silt tailing exhibited the highest strength, whereas silty clay tailing displayed the lowest. The dynamic stress–strain relationships of all three tailings types are described using the Hardin equivalent viscous-elastic model, where the initial dynamic shear modulus and the maximum dynamic shear stress in the model increased with effective confining pressure. The damping ratios exhibited a three-stage trend with increasing dynamic strain: gradual increase, rapid growth, and then gradual stabilization. Under various consolidated stress conditions, the ratio of the damping ratio to the maximum damping ratio versus the reduction in dynamic shear modulus showed a favorable linear relationship. Under vibration conditions, the dynamic shear stress corresponding to tailings failure increased with higher effective confining pressure and consolidated stress ratio. Finally, this study summarizes the parameters and indicators related to the saturated tailings of iron mines used in the research. Our work provides a foundation and reference for the design of tailings dams and the development and utilization of abandoned tailings ponds.

Funder

Science and Technology Innovation Project of Key Laboratory of Shaanxi Province China

Publisher

Hindawi Limited

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3