Biometric-Based Attendance Tracking System for Education Sectors: A Literature Survey on Hardware Requirements

Author:

Hoo Seng Chun1,Ibrahim Haidi1ORCID

Affiliation:

1. School of Electrical & Electronic Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang, Malaysia

Abstract

The application of biometric recognition in personal authentication enables the growth of this technology to be employed in various domains. The implementation of biometric recognition systems can be based on physical or behavioral characteristics, such as the iris, voice, fingerprint, and face. Currently, the attendance tracking system based on biometric recognition for education sectors is still underutilized, thus providing a good opportunity to carry out interesting research in this area. As evidenced in a typical classroom, educators tend to take the attendance of their students by using conventional methods such as by calling out names or signing off an attendance sheet. Yet, these types of methods are proved to be time consuming and tedious, and sometimes, fraud occurs. As a result, significant progress had been made to mark attendance automatically by making use of biometric recognition. This progress enables a new and more advanced biometric-based attendance system being developed over the past ten years. The setting-up of biometric-based attendance systems requires both software and hardware components. Since the software and hardware sections are too broad to be discussed in one paper, this literature survey only provides an overview of the types of hardware used. Emphasis is then placed on the microcontroller platform, biometric sensor, communication channel, database storage, and other components in order to assist future researchers in designing the hardware part of biometric-based attendance systems.

Funder

Universiti Sains Malaysia

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Smart Classrooms: How Sensors and AI Are Shaping Educational Paradigms;Sensors;2024-08-24

2. Simulation of Barcode Based Students’ Examination Attendance System;European Journal of Theoretical and Applied Sciences;2024-07-01

3. AI-Based Home Automation Using Voice Recognition and Biometric Finger Print Authentication;2024 International Conference on Expert Clouds and Applications (ICOECA);2024-04-18

4. A simple and accurate PV performance tester microcontroller based with data logger;AIP Conference Proceedings;2024

5. Deep Learning-Driven Real-Time Facial Expression Tracking and Analysis in Virtual Reality;Applied Mathematics and Nonlinear Sciences;2024-01-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3