Trace Metals, Crude Protein, and TGA-FTIR Analysis of Evolved Gas Products in the Thermal Decomposition of Roasted Mopane Worms, Sweet Corn, and Peanuts

Author:

Masite Nonkululeko S.1ORCID,Ncube Somandla2ORCID,Madikizela Lawrence M.3ORCID,Mtunzi Fanyana M.1ORCID,Pakade Vusumzi E.1ORCID

Affiliation:

1. Department of Chemistry, Private Bag X 021, Vaal University of Technology, Vanderbijlpark, South Africa

2. Department of Chemistry, Sefako Makgatho Health Sciences University, P.O Box 60, Medunsa 0204, South Africa

3. Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Florida Science Campus, 1710, South Africa

Abstract

The thermal behavior of mopane worms (Imbrasia belina), roasted peanuts (Arachis hypogaea L.), and sweet corn (Zea mays L. saccharata) was investigated under inert conditions using the TGA-FTIR analytical technique heated from 64 to 844°C at a heating rate of 20°C/min. The degradation patterns of the food samples differed as sweet corn and peanuts exhibited four degradation stages 188, 248, 315, and 432°C and 145, 249, 322, and 435°C, respectively. Mopane worms displayed three (106, 398, and 403°C). The different decomposition patterns together with the types of evolved gases shown by FTIR analysis justified the varied biochemical and chemical composition of foods. The common evolved gas species between the food samples were H2O, CO2, P=O, CO, and CH4 but mopane worms showed two extra different bands of C-N and N-H. Higher volumes of evolved gases were recorded at temperatures between 276 and 450°C, which are higher than the usual cooking temperature of 150°C. This means that the food maintained its nutritional value at the cooking temperature. Mopane worms were found to contain twice and four times crude protein content than peanuts and corn, respectively. Only total arsenic metal was reported to be above threshold limits.

Funder

Vaal University of Technology

Publisher

Hindawi Limited

Subject

Food Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3