Optimization of Mechanical Crimping in the Terminal Crimping Process Using a Response Surface Methodology

Author:

Jongwuttanaruk Kaona1ORCID,Thavornwat Chalermsak1ORCID

Affiliation:

1. Department of Industrial Engineering, Faculty of Engineering, Rajamangala University of Technology Thanyaburi, Pathum, Thani 12110, Thailand

Abstract

This research aims to optimize the tensile mechanical properties in the terminal crimping process in the terminal 064 series using central composite designs (CCD) of response surface methodology (RSM) on pull force using the Minitab 18 Program. Pull force testing is the mechanical property of the indicator in the crimping process. Three independent variables of the crimp dimensions were studied, including crimp height, crimp depth, and crimp width. The optimum crimp dimensions to sustain a maximum impact pull force of 13.60 Kgf were a crimp height of 1.25 mm, crimp depth of 2.36 mm, and crimp width of 1.48 mm for a compaction ratio of 18.63%. The tolerance on the crimp height of 0.05 mm maintained the compaction ratio within the SAE/USCAR-21 Revision 4 standard compaction range of 15 to 20%. This specification requires three consecutive crimp heights to pass electrical and mechanical tests. Using samples built to this compaction range provides the best opportunity to pass such tests whilst also addressing the problem of loose wire strands for a pull force of more than 8 Kgf. Finally, an optimization analysis is carried out to select the finest conditions for the process.

Funder

Rajamangala University of Technology Thanyaburi

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3