Multiobjective Multistate System Preventive Maintenance Model with Human Reliability

Author:

Huang Chao-Hui1ORCID,Wang Chun-Ho2ORCID,Chen Guan-Liang2ORCID

Affiliation:

1. Department of Applied Science, R.O.C. Naval Academy, Kaohsiung 813205, Taiwan

2. Chung Cheng Institute of Technology, National Defense University, Taoyuan 335009, Taiwan

Abstract

Modern equipment is designed to operate under deteriorating performance conditions resulting from internal ageing and/or external environmental impacts influencing downstream maintenance. This study focuses on the development of a multistate system (MSS) that considers a human reliability factor associated with maintenance personnel—a condition-based multiobjective MSS preventive maintenance model (MSSPMM). The study assumes that no more than one maintenance activity is performed to achieve the most appropriate preventive maintenance (PM) strategy and easy implementation and to reduce maintenance error due to human reliability. The MSS performance based on mean system unavailability and total maintenance cost is evaluated using a stochastic model approach, and then, the MSSPMM is used for optimisation. A customised version of the nondominated sorting genetic algorithm III is employed to ensure efficient solution of the PM model with human reliability—which is considered a constrained multiobjective combinatorial optimisation problem. The optimised solutions are determined from the nondominated Pareto frontier comprising the diversified PM alternatives. A helicopter power transmission system is used as an example to illustrate the efficacy and applicability of the proposed approach through sensitivity analyses with relevant parameters.

Funder

Ministry of Science and Technology of the People's Republic of China

Publisher

Hindawi Limited

Subject

Aerospace Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3