Assessment of Artificial Intelligence Models for Developing Single-Value and Loop Rating Curves

Author:

Niazkar Majid1ORCID,Zakwan Mohammad23ORCID

Affiliation:

1. Department of Civil and Environmental Engineering, Shiraz University, Shiraz, Iran

2. Civil Engineering Department, IIT Roorkee, Roorkee, India

3. Civil Engineering Department, MANUU, Hyderabad, India

Abstract

Estimation of discharge flowing through rivers is an important aspect of water resource planning and management. The most common way to address this concern is to develop stage-discharge relationships at various river sections. Various computational techniques have been applied to develop discharge ratings and improve the accuracy of estimated discharges. In this regard, the present study explores the application of the novel hybrid multigene genetic programming-generalized reduced gradient (MGGP-GRG) technique for estimating river discharges for steady as well as unsteady flows. It also compares the MGGP-GRG performance with those of the commonly used optimization techniques. As a result, the rating curves of eight different rivers were developed using the conventional method, evolutionary algorithm (EA), the modified honey bee mating optimization (MHBMO) algorithm, artificial neural network (ANN), MGGP, and the hybrid MGGP-GRG technique. The comparison was conducted on the basis of several widely used performance evaluation criteria. It was observed that no model outperformed others for all datasets and metrics considered, which demonstrates that the best method may be different from one case to another one. Nevertheless, the ranking analysis indicates that the hybrid MGGP-GRG model overall performs the best in developing stage-discharge relationships for both single-value and loop rating curves. For instance, the hybrid MGGP-GRG technique improved sum of square of errors obtained by the conventional method between 4.5% and 99% for six out of eight datasets. Furthermore, EA, the MHBMO algorithm, and artificial intelligence (AI) models (ANN and MGGP) performed satisfactorily in some of the cases, while the idea of combining MGGP with GRG reveals that this hybrid method improved the performance of MGGP in this specific application. Unlike the black box nature of ANN, MGGP offers explicit equations for stream rating curves, which may be counted as one of the advantages of this AI model.

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Reference43 articles.

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Application of deep learning algorithm in hydrometry;International Journal of Hydrology Science and Technology;2024

2. Electrochemical degradation of ciprofloxacin from water: Modeling and prediction using ANN and LSSVM;Physics and Chemistry of the Earth, Parts A/B/C;2023-12

3. Influence of different rainfall patterns and soil water content on hydrological processes in small watersheds;Frontiers in Environmental Science;2023-08-24

4. Developing ensemble models for estimating sediment loads for different times scales;Environment, Development and Sustainability;2023-04-21

5. A Novel Methodology for Lens Matching in Compact Lens Module Assembly;IEEE Transactions on Automation Science and Engineering;2023-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3