Scenario-based prediction of short-term river stage–discharge process using wavelet-EEMD-based relevance vector machine

Author:

Roushangar Kiyoumars1,Alizadeh Farhad1

Affiliation:

1. Department of Civil Engineering, University of Tabriz, 29 Bahman Ave., Tabriz, Iran

Abstract

Abstract In this study, daily river stage–discharge relationship was predicted using different modeling scenarios. Ensemble empirical mode decomposition (EEMD) algorithm and wavelet transform (WT) were used as hybrid pre-processing approach. In the WT-EEMD approach, first temporal features were decomposed using WT. Furthermore, the decomposed sub-series were further broken down into intrinsic mode functions via EEMD to obtain features with higher stationary properties. Mutual information was used to select dominant sub-series and determine efficient input dataset. Relevance vector machine (RVM) was applied to forecast river discharge. Three scenarios were developed to predict river stage–discharge process. First, a successive-station form of forecasting was proposed by incorporating geomorphological features into the modeling process. Subsequently, an integrated RVM (I-RVM) was trained based on the concept of the cascade of reservoirs and the meta-learning approach. The proposed I-RVM had the semi-distributed characteristics of the river discharge model. Finally, a multivariate RVM was trained to predict discharge for different points of the river. For this reason Westhope station's features were used as input to predict discharge at downstream of the river. Results were compared with rating curve and capability of proposed models were approved in prediction of short-term river stage–discharge.

Publisher

IWA Publishing

Subject

Atmospheric Science,Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering,Water Science and Technology

Reference57 articles.

1. Two decades of anarchy? Emerging themes and outstanding challenges for neural network river forecasting;Progress in Physical Geography,2012

2. A wavelet neural network conjunction model for groundwater level forecasting;Journal of Hydrology,2011

3. Comparison of ANNs and empirical approaches for predicting watershed runoff;Journal of Water Resources Planning and Management,2000

4. Integrated approach to model decomposed flow hydrograph using artificial neural network and conceptual techniques;Journal of Hydrology,2006

5. Wavelet-based feature extraction and decomposition strategies for financial forecasting;Journal of Computational Finance,1998

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3