Daily lake-level time series spectral analysis using EMD, VMD, EWT, and EFD

Author:

Alizadeh Farhad12ORCID,Roushangar Kiyoumars12

Affiliation:

1. a Department of Civil and Environmental Engineering, University of Tabriz, Tabriz, Iran

2. b Center of Excellence in Hydroinformatics and Faculty of Civil Engineering, University of Tabriz, 29 Bahman Ave., Tabriz, Iran

Abstract

ABSTRACT This study investigates the dynamics of daily Urmia Lake level (ULL) changes using spectral analysis tools to discover fluctuating patterns in the ULL series. Therefore, in the present research, the empirical mode decomposition (EMD), variational mode decomposition (VMD), empirical wavelet transform (EWT), and empirical Fourier decomposition (EFD) were used to analyze the ULL signal. ULL series were decomposed into subseries, and the optimized outcome was used. All methods concluded that the ULL series has a steep downward trend. Signal reconstruction was performed, and it was inferred that EFD could not estimate the ULL series appropriately and had root-mean-square error (RMSE) = 12.26. Different from EFD, other methods performed better signal construction according to RMSE and error analysis. The mode-mixing issue was the last step in verifying the capabilities of signal-analyzing methods. Based on the power spectral density (PSD), it was seen that EMDs had mode-mixing problems and limitations in signal decomposition, whereas VMD and EWT did not have these issues. Results demonstrated that the present study has some limitations. Overall, it was concluded that VMD performed better in terms of RMSE, error analysis, reconstruction, mode-mixing problems, and PSD analysis while decomposing and extracting features from the ULL signal.

Publisher

IWA Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3