Design and Analysis of Propeller for High-Altitude Search and Rescue Unmanned Aerial Vehicle

Author:

Dahal Chiranjivi1ORCID,Dura Hari Bahadur1ORCID,Poudel Laxman1

Affiliation:

1. Department of Mechanical and Aerospace Engineering, Institute of Engineering, Pulchowk Campus, Tribhuvan University, Nepal

Abstract

The commercially available unmanned aerial vehicles are not good enough for search and rescue flight at high altitudes. This is because as the altitude increases, the density of air decreases which affects the thrust generation of the UAV. The objective of this research work is to design thrust optimized blade for an altitude range of 3,000–5,000 m with a density of air 0.7364 kg/m3, respectively, and perform thrust analysis. The property of aluminum alloy 1,060 being lightweight is chosen for designing and testing of blade. The blade element theory-based design and analysis code was developed, and user-friendly aerodynamic inputs were used to obtain the desired outputs. The geometry designed for an altitude range of 3,000-5,000 m faced the total stress of 6.0 MPa which was at 70% of the blade span. This stress is within the limit of yield strength of the aluminum alloy, 28 MPa. The modal analysis shows the first natural frequency occurs at around 12,000 RPM which is safe for operating the blade at 0-5,000 RPM. Experimental analysis of the blade gave a thrust of 0.92 N at 2,697 RPM at 1,400 m. The analytical solution for thrust with the same conditions was 1.7 N with 85.6% efficiency. The validation of experimental results has been done by the CFD analysis. The CFD analysis was performed in ANSYS CFX which gave a thrust value of 2.27 N for the same boundary conditions. Thus, the blade designed for high altitude SAR UAV is structurally safe to operate in 0-5,000 RPM range, and its use in search missions could save many lives in the Himalayas.

Funder

Nepal Academy of Science and Technology

Publisher

Hindawi Limited

Subject

Aerospace Engineering

Reference51 articles.

1. New technologies to support NASA's Mission to Planet Earth satellite remote sensing product validation: use of an unmanned autopiloted vehicle (UAV) as a platform to conduct remote sensing

2. Precision Agriculture as a Commercial Application for Solar-Powered Unmanned Aerial Vehicles

3. Collection of ultra high spatial and spectral resolution image data over California vineyards with a small UAV;L. F. Johnson,2003

4. A mini unmanned aerial vehicle (UAV): system overview and image acquisition;H. Eisenbeiss;International Archives of Photogrammetry. Remote Sensing and Spatial Information Sciences,2004

5. A light-weight multispectral sensor for micro UAV-opportunities for very high resolution airborne remote sensing;S. Nebiker;The international archives of the photogrammetry, remote sensing and spatial information sciences,2008

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3