Aerodynamic Analysis of Mathematically Modelled Propeller for Small UAV Using CFD in Different Temperature Conditions

Author:

Ganesan Tamilselvan,Jayarajan Niresh

Abstract

Unmanned aerial vehicle (UAV) usage has witnessed a significant rise owing to its cost-effectiveness and versatile applications. However, the design techniques for UAV propellers, encompassing aerodynamic and structural analysis, have received limited attention from researchers. A well-designed propeller can effectively reduce battery consumption and enhance overall efficiency. This study focuses on mathematically designed propellers and compares them with advanced precision composite (APC) Slow Flyer propeller blades in terms of thrust coefficients, power coefficients, and efficiency. The investigation includes the utilization of tetrahedron meshing in simulations, employing the standard k–ω (k–omega) model. To evaluate the accuracy of the blade element theory (BET) in predicting thrust, the simulation data is compared with BET results. Furthermore, the study encompasses experimental testing to validate the simulation findings. The findings demonstrate that the mathematically modelled propeller outperforms the APC Slow Flyer propeller across all ranges of revolutions per minute (rpm). When comparing the results of both methods, BET exhibits an error difference of 10 % in higher rpm ranges, but this error diminishes as the rpm decreases. This study contributes a novel design technique for modelling propellers using mathematical formulas and provides a comprehensive comparison of their aerodynamic properties with existing propellers, utilizing both BET and computational fluid dynamics (CFD) methods, along with experimental validation.

Publisher

Faculty of Mechanical Engineering

Subject

Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3