Estimation of Hourly Traffic Flows from Floating Car Data for Vehicle Emission Estimation

Author:

Jiang Yun1ORCID,Song Guohua1ORCID,Zhang Zeyu1ORCID,Zhai Zhiqiang1ORCID,Yu Lei123ORCID

Affiliation:

1. Key Laboratory of Transport Industry of Big Data Application Technologies for Comprehensive Transport, Beijing Jiaotong University, Beijing 100044, China

2. Department of Transportation Studies, Texas Southern University, Houston, TX 77004, USA

3. School of Intelligent Transportation, Xuchang University, Xuchang 461000, Henan, China

Abstract

In order to model air quality in heavy pollution days, a dynamic emission monitoring system is implemented in the Beijing road network, which requires the input of hourly traffic flows. Floating car data (FCD) is increasingly employed for flow estimation based on the fundamental diagrams to supplement data provided by stationary detectors. However, existing studies often used a typical fundamental diagram without considering the hysteresis phenomena and the uncertainty of traffic flow estimation. This study aims to develop a multiperiod fundamental diagram for the traffic flow estimation from FCD considering the hysteresis phenomena. The result shows that the proposed multiperiod fundamental diagram can improve the accuracy of flow estimation. The uncertainty of traffic flow estimation at both 10 minutes and 1 hour is also quantified, and the result indicates that the variation of the estimation uncertainty at 1 hour is lower than that at 10 minutes, with an average 7% reduction of the range of 95% confidence interval (CI). But there is no significant difference in magnitudes of the estimation uncertainty at 1 hour compared with that at 10 minutes. Moreover, the uncertainty for congested flows is lower than that for free flows. In the case study, the proposed model is employed to develop the spatial and temporal distributions of flows and emissions for the metropolitan area in Beijing.

Funder

National Key R&D Program of China

Publisher

Hindawi Limited

Subject

Strategy and Management,Computer Science Applications,Mechanical Engineering,Economics and Econometrics,Automotive Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3