A Novel Environment Estimation Method of Whole Sample Traffic Flows and Emissions Based on Multifactor MFD

Author:

Zang Jinrui,Jiao Pengpeng,Song Guohua,Li ZhihongORCID,Peng Tingyi

Abstract

Vehicle emissions seriously affect the air environment and public health. The dynamic estimation method of vehicle emissions changing over time on the road network has always been the bottleneck of air quality simulation. The dynamic traffic volume is one of the important parameters to estimate vehicle emission, which is difficult to obtain effectively. A novel estimation method of whole sample traffic volumes and emissions on the entire road network based on multifactor Macroscopic Fundamental Diagram (MFD) is proposed in this paper. First, the intelligent clustering and recognition methods of traffic flow patterns are constructed based on neural network and deep-learning algorithms. Then, multifactor MFD models are developed considering different road types, traffic flow patterns and weekday peak hours. Finally, the high spatiotemporal resolution estimation method of whole sample traffic volumes and emissions are constructed based on MFD models. The results show that traffic flow patterns are clustered efficiently by the Self-Organizing Maps (SOM) algorithm combined with the direct time-varying speed index, which describe 91.7% traffic flow states of urban roads. The Deep Belief Network (DBN) algorithm precisely recognizes 92.1% of the traffic patterns based on the speeds of peak hours. Multifactor MFD models estimate the whole sample traffic volumes with a high accuracy of 91.6%. The case study shows that the vehicle emissions are evaluated dynamically based on the novel estimation method proposed in this paper, which is conducive to the coordinated treatment of air pollution.

Funder

Fundamental Research Funds for the Universities of Beijing

Natural Science Foundation of China

Major Program of the National Social Science Foundation of China

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3