Adaptive Finite-Time Control for Formation Tracking of Multiple Nonholonomic Unmanned Aerial Vehicles with Quantized Input Signals

Author:

Hu Jinglin1ORCID,Sun Xiuxia1ORCID,He Lei1

Affiliation:

1. Air Force Engineering University, Xi’an 710038, China

Abstract

Signal quantization can reduce communication burden in multiple unmanned aerial vehicle (multi-UAV) system, whereas it brings control challenge to formation tracking of multi-UAV system. This study presents an adaptive finite-time control scheme for formation tracking of multi-UAV system with input quantization. The UAV model contains nonholonomic kinematic model and autopilot model with uncertainties. The nonholonomic states of the UAVs are transformed by a transverse function method. For input quantization, hysteretic quantizers are used to reduce the system chattering and new decomposition is introduced to analyze the quantized signals. Besides, a novel transformation of the control signals is designed to eliminate the quantization effect. Based on the backstepping technique and finite-time Lyapunov stability theory, the adaptive finite-time controller is established for formation tracking of the multi-UAV system. Stability analysis proves that the tracking error can converge to an adjustable small neighborhood of the origin within finite time and all the signals in closed-loop system are semiglobally finite-time bounded. Simulation experiment illustrates that the system can track the reference trajectory and maintain the desired formation shape.

Funder

Aeronautical Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3