A Generative Adversarial Network Based a Rolling Bearing Data Generation Method Towards Fault Diagnosis

Author:

Huo Lin12ORCID,Qi Huanchao1,Fei Simiao3,Guan Cong4,Li Ji1

Affiliation:

1. Shenyang Aerospace University, Shenyang 110035, China

2. Liaoning Key Laboratory of Aircraft Safety and Airworthiness, Shenyang, China

3. Shenyang Aircraft Design Institute, Shenyang 110035, China

4. Nanjing University, Nanjing 210023, China

Abstract

As a new generative model, the generative adversarial network (GAN) has great potential in the accuracy and efficiency of generating pseudoreal data. Nowadays, bearing fault diagnosis based on machine learning usually needs sufficient data. If enough near-real data can be generated in the case of insufficient samples in the actual operating condition, the effect of fault diagnosis will be greatly improved. In this study, a new rolling bearing data generation method based on the generative adversarial network (GAN) is proposed, which can be trained adversarially and jointly via a learned embedding, and applied to solve fault diagnosis problems with insufficient data. By analyzing the time-domain characteristics of rolling bearing life cycle monitoring data in actual working conditions, the operation data are divided into three periods, and the construction and training of the generative adversarial network model are carried out. Data generated by adversarial are compared with the real data in the time domain and frequency domain, respectively, and the similarity between the generated data and the real data is verified.

Funder

Shenyang University of Aeronautics and Astronautics

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3