Niosomal-Based Drug Delivery Platforms: A Promising Therapeutic Approach to Fight Staphylococcus aureus Drug Resistance

Author:

Hemmati Jaber1ORCID,Chegini Zahra1ORCID,Arabestani Mohammad Reza12ORCID

Affiliation:

1. Department of Microbiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran

2. Infectious Disease Research Center, Hamadan University of Medical Sciences, Hamadan, Iran

Abstract

Staphylococcus aureus, a prominent bacterial pathogen, presents formidable medical challenges owing to its rapid development of resistance. The emergence of multidrug resistant (MDR) S. aureus strains has become a pressing concern for healthcare systems, driving researchers to explore novel therapeutic strategies for managing infections associated with this pathogen. In this pursuit, niosomal-based platforms have emerged as promising candidates to effectively target S. aureus and fight conventional antimicrobial resistance. Niosomes comprise a bilayer membrane formed by nonionic surfactants, which can encapsulate both hydrophilic and hydrophobic drugs. These nanoparticles are known as vesicular delivery systems and have many advantages, such as low cost, less toxicity, and more flexibility and stability. Moreover, niosomes, being an effective drug delivery system, can directly interact with the bacterial cell envelope, thereby enhancing the pharmacokinetic activities of drugs at infected sites. A niosome-based delivery system can effectively treat S. aureus infections by destroying the biofilm community, increasing intracellular targeting, and enhancing the antibacterial activity. The main mechanisms of action of niosomes against resistant S. aureus strains involve the ability to resist enzymatic degradation, controlled release profile, and targeted drug delivery, which can provide an effective dosage of antimicrobial agents at the site of actions. In addition, niosomes have the potential to transfer wide-spectrum materials from different classes of antibiotics to nonantibiotic antimicrobial agents, such as natural compounds, antimicrobial peptides, and metallic nanoparticles. The combination of polymeric materials in the structure of a niosomal formulation could improve their bioavailability, loading capacity, and therapeutic efficacy for different applications. Furthermore, niosomes could find application in photodynamic therapy, offering a promising alternative to conventional treatments for eradicating drug-resistant S. aureus isolates. Finally, niosomal nanocarriers can be developed for delivering the drugs to desired sites by different routes of administration and could be considered a powerful strategy for overcoming the therapeutic obstacles caused by MDR S. aureus.

Funder

Hamadan University of Medical Sciences

Publisher

Hindawi Limited

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3