Affiliation:
1. Department of Dental Materials and Prosthodontics, Araraquara Dental School, UNESP - Universidade Estadual Paulista, Rua Humaitá 1680, 14801-903 Araraquara, SP, Brazil
2. Nanomedicine and Nanotoxicology Group, Physics Institute of São Carlos, University of São Paulo, 13566-590 São Carlos, SP, Brazil
Abstract
An AgNPs solution was synthesized by chemical reduction, characterized, and tested againstCandida glabrata,Candida tropicalis,Staphylococcus aureus, and methicillin-resistantStaphylococcus aureus(MRSA). Minimum inhibitory (MICs) and minimum fungicidal/bactericidal concentrations (MFC/MBC) were determined on planktonic cells. Also, total biofilm mass was determined by crystal violet (CV) staining and morphological changes by scanning electron microscope (SEM). MICs forC. glabrata,C. tropicalis,S. aureus, and MRSA were 15.63, 3.91, 1.95, and 1.95 µg/mL, respectively. MFC forC. glabratawas 62.5 µg/mL and forC. tropicalis15.63 µg/mL The same MBC (3.91 µg/mL) was observed forS. aureusand MRSA. CV assay showed that the AgNPs (1000 μg/mL) promoted reductions in biofilm mass of ~60% forC. glabrataand ~35% forC. tropicalis. A reduction of ~20% inC. tropicalisbiomass was also observed at the concentration of 3.91 µg/mL. No significant effect on total biomass was found forS. aureusand MRSA. SEM images revealed thatC. glabrataandC. tropicalisbiofilm cells, exposed to the AgNPs (1000 μg/mL), had an irregular and shriveled appearance. AgNPs solution exhibited considerable antimicrobial activity against important fungal and bacterial pathogens, associated with several oral and systemic diseases, and has potential as an antimicrobial agent.
Funder
Fundação de Amparo á Pesquisa do Estado de São Paulo
Subject
General Materials Science
Cited by
36 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献