A Deep Learning Method for Near-Real-Time Cloud and Cloud Shadow Segmentation from Gaofen-1 Images

Author:

Khoshboresh-Masouleh Mehdi1ORCID,Shah-Hosseini Reza1ORCID

Affiliation:

1. School of Surveying and Geospatial Engineering, College of Engineering, University of Tehran, Tehran, Iran

Abstract

In this study, an essential application of remote sensing using deep learning functionality is presented. Gaofen-1 satellite mission, developed by the China National Space Administration (CNSA) for the civilian high-definition Earth observation satellite program, provides near-real-time observations for geographical mapping, environment surveying, and climate change monitoring. Cloud and cloud shadow segmentation are a crucial element to enable automatic near-real-time processing of Gaofen-1 images, and therefore, their performances must be accurately validated. In this paper, a robust multiscale segmentation method based on deep learning is proposed to improve the efficiency and effectiveness of cloud and cloud shadow segmentation from Gaofen-1 images. The proposed method first implements feature map based on the spectral-spatial features from residual convolutional layers and the cloud/cloud shadow footprints extraction based on a novel loss function to generate the final footprints. The experimental results using Gaofen-1 images demonstrate the more reasonable accuracy and efficient computational cost achievement of the proposed method compared to the cloud and cloud shadow segmentation performance of two existing state-of-the-art methods.

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3