Affiliation:
1. School of Surveying and Geospatial Engineering, College of Engineering, University of Tehran, Tehran, Iran
Abstract
In this study, an essential application of remote sensing using deep learning functionality is presented. Gaofen-1 satellite mission, developed by the China National Space Administration (CNSA) for the civilian high-definition Earth observation satellite program, provides near-real-time observations for geographical mapping, environment surveying, and climate change monitoring. Cloud and cloud shadow segmentation are a crucial element to enable automatic near-real-time processing of Gaofen-1 images, and therefore, their performances must be accurately validated. In this paper, a robust multiscale segmentation method based on deep learning is proposed to improve the efficiency and effectiveness of cloud and cloud shadow segmentation from Gaofen-1 images. The proposed method first implements feature map based on the spectral-spatial features from residual convolutional layers and the cloud/cloud shadow footprints extraction based on a novel loss function to generate the final footprints. The experimental results using Gaofen-1 images demonstrate the more reasonable accuracy and efficient computational cost achievement of the proposed method compared to the cloud and cloud shadow segmentation performance of two existing state-of-the-art methods.
Subject
General Mathematics,General Medicine,General Neuroscience,General Computer Science
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献