Dynamic Reliability of Continuous Rigid-Frame Bridges under Stochastic Moving Vehicle Loads

Author:

Lu Naiwei12ORCID,Wang Kai1,Wang Honghao1,Liu Yang13,Luo Yuan3,Xiao Xinhui3

Affiliation:

1. Engineering Research Center of Catastrophic Prophylaxis and Treatment of Road & Traffic Safety of Ministry of Education, Changsha University of Science & Technology, Changsha 410114, China

2. Industry Key Laboratory of Traffic Infrastructure Security Risk Management, Changsha University of Science and Technology, Changsha 410114, China

3. School of Civil Engineering, Hunan University of Technology, Zhuzhou 412007, China

Abstract

The current volume of freight traffic has increased significantly during the past decades, impacted by the fast development of the national transportation market. As a result, the phenomena of truck overloading and traffic congestion emerge, which have resulted in numerous bridge collapse events or damage due to truck overloading. Thus, it is an urgent task to evaluate bridge safety under actual traffic loads. This study evaluated probabilistic dynamic load effects on rigid-frame bridges under highway traffic monitoring loads. The site-specific traffic monitoring data of a highway in China were utilized to establish stochastic traffic models. The dynamic effect was considered in a vehicle-bridge coupled vibration model, and the probability estimation was conducted based on the first-passage criterion of the girder deflection. The prototype bridge is a continuous rigid-frame bridge with a midspan length of 200 m and a pier height of 182 m. It is demonstrated that the dynamic traffic load effect follows Gaussian distribution, which can be treated as a stationary random process. The mean value and standard deviation of the deflections are 0.071 m and 0.088 m, respectively. The dynamic reliability index for the first passage of girder deflection is 6.45 for the current traffic condition. However, the reliability index decreases to 5.60 in the bridge lifetime, accounting for an average traffic volume growth ratio of 3.6%.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3