Efficient Task Offloading for 802.11p-Based Cloud-Aware Mobile Fog Computing System in Vehicular Networks

Author:

Wu Qiong123ORCID,Ge Hongmei3,Fan Qiang4,Yin Wei1,Chang Bo2,Wu Guilu3

Affiliation:

1. Jiangsu Key Laboratory of Traffic and Transportation Security, Huaiyin Institute of Technology, Huaian 223003, China

2. Jiangsu Laboratory of Lake Environment Remote Sensing Technologies, Huaiyin Institute of Technology, Huaian 223003, China

3. School of Internet of Things Engineering, Jiangnan University, Wuxi 214122, China

4. Department of Electrical and Computer Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA

Abstract

Various emerging vehicular applications such as autonomous driving and safety early warning are used to improve the traffic safety and ensure passenger comfort. The completion of these applications necessitates significant computational resources to perform enormous latency-sensitive/nonlatency-sensitive and computation-intensive tasks. It is hard for vehicles to satisfy the computation requirements of these applications due to the limit computational capability of the on-board computer. To solve the problem, many works have proposed some efficient task offloading schemes in computing paradigms such as mobile fog computing (MFC) for the vehicular network. In the MFC, vehicles adopt the IEEE 802.11p protocol to transmit tasks. According to the IEEE 802.11p, tasks can be divided into high priority and low priority according to the delay requirements. However, no existing task offloading work takes into account the different priorities of tasks transmitted by different access categories (ACs) of IEEE 802.11p. In this paper, we propose an efficient task offloading strategy to maximize the long-term expected system reward in terms of reducing the executing time of tasks. Specifically, we jointly consider the impact of priorities of tasks transmitted by different ACs, mobility of vehicles, and the arrival/departure of computing tasks, and then transform the offloading problem into a semi-Markov decision process (SMDP) model. Afterwards, we adopt the relative value iterative algorithm to solve the SMDP model to find the optimal task offloading strategy. Finally, we evaluate the performance of the proposed scheme by extensive experiments. Numerical results indicate that the proposed offloading strategy performs well compared to the greedy algorithm.

Funder

Jiangsu Laboratory of Lake Environment Remote Sensing Technologies Open Fund

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3