AI-Enabled Energy-Efficient Fog Computing for Internet of Vehicles

Author:

Tariq Hira1,Javed Muhammad Awais1ORCID,Alvi Ahmad Naseem1ORCID,Hasanat Mozaherul Hoque Abul2ORCID,Khan Muhammad Badruddin2,Saudagar Abdul Khader Jilani2ORCID,Alkhathami Mohammed2

Affiliation:

1. Department of Electrical and Computer Engineering, COMSATS University Islamabad (CUI), Islamabad 45550, Pakistan

2. Information Systems Department, College of Computer and Information Sciences, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11432, Saudi Arabia

Abstract

Future autonomous electric vehicles (EVs) are equipped with several IoT sensors, smart devices, and wireless adapters, thus forming an Internet of Vehicles (IoVs). These intelligent EVs are envisioned to be a promising solution for improving transportation efficiency, road safety, and driving experience. Vehicular fog computing (VFC) is an evolving technology that allows vehicular application-related tasks to be offloaded to nearby computing nodes and process them quickly. A major challenge in the VFC system is to design energy-efficient task offloading algorithms. In this paper, we propose an optimal energy-efficient algorithm for task offloading in a VFC system that maximizes the expected reward function which is derived using the total energy and time delay of the system for the computation of the task. We use parallel computing and formulate the optimization problem as semi-Markov decision process (SMDP). Bellman optimal equation is used in value iteration algorithm (VIA) to get an optimal scheme by selecting the best action for the current state that maximizes the energy-based reward function. Numerical results show that the proposed scheme outperforms the greedy algorithm in terms of energy consumption.

Funder

Imam Mohammad Ibn Saud Islamic University

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3