RePage: A Novel Over-Air Reprogramming Approach Based on Paging Mechanism Applied in Fog Computing

Author:

Qiu Jiefan1,Li Sai1,Cao Bin1ORCID

Affiliation:

1. College of Computer Science, Zhejiang University of Technology, Hangzhou, China

Abstract

In fog computing, fog nodes running different tasks near the sources of data are required. Limited to on-board resource, fog node finds it hard to execute multiple tasks and needs over-air reprogramming to rearrange them. With respect to reprogramming, energy efficiency is one of the key issues for over-air reprogramming. Most of traditional reprogramming approaches focus on the energy efficiency during data transmission within network. However, program rebuilding on fog node is, as another significant energy cost, caused by writing/reading local high-power memory. We present a novel incremental reprogramming approach, RePage, in three stages. Firstly, we design a function paging mechanism that makes similar functions to one function page and caches them in low-power volatile memory to save energy. Secondly, we design new cache replacement algorithm for function page considering both modification times and range on the page. At last, further reducing writing/reading operations, we also redesign function invocation manner by centralized managing function addresses. Experiment results show that RePage reduces the sum of reading/writing operations on volatile memory by 89.1% and 92.5% compared to EasiCache and Tiny Module-link, and its hit rate is improved by 10.4% to Least Recently Used (LRU) algorithm.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. ConceptOS: A Micro-Kernel Approach to Firmware Updates of Always-On Resource-Constrained Hubris-Based IoT Systems;IEEE Internet of Things Journal;2023

2. Efficient Patch Module for Single-bank or Dual-bank Firmware Updates for Embedded Devices;2020 23rd International Symposium on Design and Diagnostics of Electronic Circuits & Systems (DDECS);2020-04

3. Universal framework for remote firmware updates of low-power devices;Computer Communications;2019-05

4. Secure and Smartphone-Assisted Reprogramming for Wireless Sensor Networks Based on Visible Light Communication;Wireless Communications and Mobile Computing;2019-03-14

5. Smartphone-Assisted Over-Air Reprogramming Based on Visible Light Communication;2018 14th International Conference on Mobile Ad-Hoc and Sensor Networks (MSN);2018-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3