Compactly encoding unstructured inputs with differential compression

Author:

Ajtai Miklos1,Burns Randal2,Fagin Ronald1,Long Darrell D. E.3,Stockmeyer Larry1

Affiliation:

1. IBM Almaden Research Center, San Jose, California

2. Johns Hopkins University, Baltimore, Maryland

3. University of California---Santa Cruz, Santa Cruz, California

Abstract

The subject of this article is differential compression , the algorithmic task of finding common strings between versions of data and using them to encode one version compactly by describing it as a set of changes from its companion. A main goal of this work is to present new differencing algorithms that (i) operate at a fine granularity (the atomic unit of change), (ii) make no assumptions about the format or alignment of input data, and (iii) in practice use linear time, use constant space, and give good compression. We present new algorithms, which do not always compress optimally but use considerably less time or space than existing algorithms. One new algorithm runs in O ( n ) time and O (1) space in the worst case (where each unit of space contains [log n ] bits), as compared to algorithms that run in O ( n ) time and O ( n ) space or in O ( n 2 ) time and O (1) space. We introduce two new techniques for differential compression and apply these to give additional algorithms that improve compression and time performance. We experimentally explore the properties of our algorithms by running them on actual versioned data. Finally, we present theoretical results that limit the compression power of differencing algorithms that are restricted to making only a single pass over the data.

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Hardware and Architecture,Information Systems,Control and Systems Engineering,Software

Reference29 articles.

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3