Initial Alignment Error On-Line Identification Based on Adaptive Particle Swarm Optimization Algorithm

Author:

Guo Weilin1ORCID,Xian Yong1,Li Bing1,Ren Leliang1

Affiliation:

1. Xi’an Research Institute of High Technology, Xi’an, Shaanxi 710025, China

Abstract

To solve the problem of high accuracy initial alignment of strap-down inertial navigation system (SINS) for ballistic missile, an on-line identification method of initial alignment error based on adaptive particle swarm optimization (PSO) is proposed. Firstly, a complete navigation model of SINS is established to provide the accurate model basis for subsequent numerical optimization calculation. Then setting the initial alignment error as the optimization parameter and regarding the minimum deviation between SINS and GPS output as the objective function, the error parameter optimization model is designed. At the same time, the mutation idea of genetic algorithm (GA) is introduced into the PSO; thus the adaptive PSO is adopted to identify the initial alignment error on-line. The simulation results show that it is feasible to solve the initial alignment error identification problem of SINS by intelligent optimization algorithm. Compared with the standard PSO algorithm and the GA, the adaptive PSO algorithm has the fastest convergence speed and the highest convergence precision, and the initial pitch error and the initial yaw error precision are within 10 and the initial azimuth error precision is within 25. The navigation accuracy of SINS is improved effectively. Finally, the feasibility of the adaptive PSO algorithm to identify the initial alignment error is further validated based on the test data.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3