Kalman Filter Design for Initial Precision Alignment of a Strapdown Inertial Navigation System on a Rocking Base

Author:

Li Hanzhou,Pan Quan,Wang Xiaoxu,Jiang Xiangjun,Deng Lin

Abstract

In this paper, a conventional Strapdown Inertial Navigation System (SINS) alignment method on a disturbed base is analysed. A novel method with an attitude tracking idea is proposed for the rocking base alignment. It is considered in this method that the alignment algorithm should track the rocking base attitude real changes in the alignment process, but not excessively restrain disturbance. According to this idea, a rapid alignment algorithm is devised for the rocking base. In the algorithm, coarse alignment is carried out within 30 s in the inertial frame with alignment precision less than 2°, which meets Kalman filter linearization conditions well. Then a Kalman filter with ten state vectors and four measurement vectors is applied for the fine alignment to improve the capability of the algorithm in tracking the vehicle attitude. A turntable rotation experiment is carried out to validate the capability of the fine algorithm in tracing the large magnitude change during alignment. It is shown that the repeated alignment precision is about 0·04° by the alignment experiment on a rocking vehicle, with alignment time of 180 s. The Laser Strapdown Inertial Navigation System (LINS) ground navigation experiment suggests that the algorithm proposed by this paper can be satisfied without the need of high precision SINS alignment.

Publisher

Cambridge University Press (CUP)

Subject

Ocean Engineering,Oceanography

Reference17 articles.

1. Unscented Kalman filter for SINS alignment;Zhou;Systems Engineering and Electronics,2007

2. Initial Alignment Method of Sins in Stationary State;Wang;Journal of Chinese Inertial Technology,2004

3. Novel method for coarse alignment of strapdown INS on oscillatory base;Vidya;Journal of Aerospace Sciences and Technologies,2009

4. Mooring alignment for marine SINS using the digital filter

5. New techniques for initial alignment of strapdown inertial navigation system

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3