Affiliation:
1. Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, School of Mechanical Engineering, Tianjin University of Technology, Tianjin 300384, China
2. National Demonstration Center for Experimental Mechanical and Electrical Engineering Education (Tianjin University of Technology), Tianjin, China
Abstract
Human activity recognition (HAR) has attracted considerable research attention in the past decade with the development of wearable sensor technology and deep learning algorithms. However, most of the existing HAR methods ignored the spatial relationship of features, which may lead to recognition errors. In this paper, a novel model based on a modified capsule network (MCN) is proposed to accurately recognize various human activities. This novel model is composed of a convolution block and a capsule block, which can achieve end-to-end intelligent recognition. In the meantime, the spatial information among features is preserved through a dynamic routing process. To validate the effectiveness of the model, a human activity dataset is constructed by placing an inertial measurement unit (IMU) on the calf of the volunteers to collect their activity data in daily life, including walking, jogging, upstairs, downstairs, up-ramps, and down-ramps. The recognition accuracy of this novel approach can reach 96.08%, which performs better than the convolutional neural network (CNN) with an accuracy of 91.62%. In addition, it is evaluated on two public datasets named WISDM and UCI-HAR, and the accuracies achieve 98.21% and 95.28%, respectively, which presents higher accuracy than the reported results obtained from benchmark algorithms like CNN. The experimental results show that the proposed model has better activity detection capability and achieves outstanding performance for HAR.
Funder
Tianjin Technical Expert Project
Subject
Computer Networks and Communications,Computer Science Applications
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献