A Deep Learning-Based Framework for Human Activity Recognition in Smart Homes

Author:

Mihoub Alaeddine1ORCID

Affiliation:

1. Department of Management Information Systems and Production Management, College of Business and Economics, Qassim University, P.O. Box: 6640, Buraidah 51452, Saudi Arabia

Abstract

Human behavior modeling in smart environments is a growing research area treating several challenges related to ubiquitous computing, pattern recognition, and ambient assisted living. Thanks to recent progress in sensing devices, it is now possible to design computational models able of accurate detection of residents’ activities and daily routines. For this goal, we introduce in this paper a deep learning-based framework for activity recognition in smart homes. This framework proposes a detailed methodology for data preprocessing, feature mining, and deep learning techniques application. The novel framework was designed to ensure a deep exploration of the feature space since three main approaches are tested, namely, the all-features approach, the selection approach, and the reduction approach. Besides, the framework proposes the evaluation and the comparison of several well-chosen deep learning techniques such as autoencoder, recurrent neural networks (RNN), and some of their derivatives models. Concretely, the framework was applied on the “Orange4Home” dataset which represents a recent dataset specially designed for smart homes research. Our main findings show that the best approach for efficient classification is the selection approach. Furthermore, our overall results outperformed baseline models based on random forest classifiers and the principal component analysis technique, especially the results of our RNN-based model for the all-features approach and the results of our autoencoder-based model for the feature reduction approach.

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Computer Science Applications

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Activity Recognition Protection for IoT Trigger-Action Platforms;2024 IEEE 9th European Symposium on Security and Privacy (EuroS&P);2024-07-08

2. Deep Learning based Human Activity Recognition in Smart Home;2024 4th International Conference on Data Engineering and Communication Systems (ICDECS);2024-03-22

3. NeuroHAR: A Neuroevolutionary Method for Human Activity Recognition (HAR) for Health Monitoring;IEEE Access;2024

4. Detection of Driver Behaviours using Convolutional Neural Network with Modified Inception Module;2023 International Conference on Radar, Antenna, Microwave, Electronics, and Telecommunications (ICRAMET);2023-11-15

5. Deep Learning-Based Human Activity Recognition Algorithms: A Comparative Study;2023 IEEE International Conference on Image Processing and Computer Applications (ICIPCA);2023-08-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3