Distributed Intelligent Learning and Decision Model Based on Logic Predictive Control

Author:

Zhou Yucheng1ORCID,Lu Wen2,Zhang Yingqiu3

Affiliation:

1. Chongqing Jiaotong University, Chongqing 400074, China

2. School of Sciences, Zhejiang SCI-TECH University, Hangzhou, Zhejiang 310000, China

3. School of Competitive Sports, Beijing Sport University, Beijing 100084, China

Abstract

By the method of documentation and logical analysis, based on the data, based on logic and based on the knowledge of three kinds of artificial intelligence in the sports education, the intelligent learning system feedback delay are studied, combined with mobile communication which led to the artificial intelligence online sports games teaching, pattern recognition, and virtual technology combined with innovative teaching interaction and experience. Promoting the development of green PE teaching machine learning can identify the types of PE activities and realize efficient PE learning diagnosis. Intelligent decision support system can identify sports talents and improve the effect of personalized PE teaching evaluation. From the perspective of psychological development and education, the key problems to be solved in the integration of artificial intelligence and physical education are examined. Then, the consistent model predictive control for feedback delay of nonlinear sports learning multiagent system with network induced delay and random communication protocol is studied. Under the communication waiting mechanism designed, each agent has a certain tolerance of delay, and this tolerance can be determined by ensuring the stability of the system. At the same time, a random communication protocol is designed to ensure the ordered communication of the multiagent system. Finally, the effectiveness of the proposed algorithm is verified by numerical simulation. To solve the channel competition access problem of the sports intelligent learning system with special structure feedback delay model predictive control, a dual channel awareness scheduling strategy under the model predictive control framework was proposed, and the distributed threshold strategy of sensors and the priority threshold strategy of controllers were designed. It is proved that the sensor will eventually work at Nash equilibrium point under the policy updating mechanism, and the priority threshold strategy of the controller is better than the traditional independent and identically distributed access strategy. By avoiding the data transmission when the channel status is poor, the channel access of the system is efficient and saves energy.

Funder

National Social Science Foundation of China

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3