How the Solid/Liquid Ratio Affects the Cation Exchange Process and Porosity in the Case of Dioctahedral Smectite: Structural Analysis?

Author:

Mejri Chadha1,Oueslati Walid1ORCID,Amara Abdesslem Ben Haj1

Affiliation:

1. Université de Carthage, Faculté des Sciences de Bizerte, LR19ES20: Ressources, Matériaux et Ecosystèmes (RME), 7021 Bizerte, Tunisia

Abstract

The performance of a clay mineral geomembrane used in the context of a geological barrier for industrial and radioactive waste confinement must pass through the understanding of its hydrous response as well as the limits of the cation exchange process which are closely related to the solid/liquid ratio constraint. The Na-rich montmorillonite is used, as starting material, to evaluate the link between the applied external constraint (variable solid/liquid ratio) and the structural response of the material. The geochemical constraint is realized at the laboratory scale, and the possible effects are investigated in the cases of Ba2+ and Ni2+ heavy metal cations. The structural analysis is achieved using the XRD profile modeling approach to quantify the interlayer space (IS) deformation. The quantitative XRD analysis, which consists of the comparison of experimental 001 reflections with the calculated ones deduced from structural models, allowed us to determine the optimal structural parameters describing IS configuration along the c axis. The obtained result showed an interstratified hydration character, for both studied exchangeable cations, regardless of the solid/liquid ratio being described probably by a partial cation exchange process. The theoretical mixed layer structure (MLS) suggests the coexistence of more one cristallite species saturated by more than one exchangeable cations, indicating a partial saturation of all exchangeable sites. The optimum structural parameter values, from the theoretical model, allowed us to follow the evolution of several intrinsic properties versus the applied constraint strength. The variable solid/liquid ratio effect on the material porosity is examined by the BET-specific surface area and BJH pore size distribution (PSD) analyses. The adsorption measurement outcomes confirm XRD results concerning mainly the link between several intrinsic clay properties and the constraint strength.

Publisher

Hindawi Limited

Subject

Surfaces and Interfaces,General Chemical Engineering,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3