Optimal Power Flow Algorithm Based on Second-Order Cone Relaxation Method for Electricity-Gas Integrated Energy Microgrid

Author:

Zhang Fan1,Shen Zhuzheng2,Xu Wen1,Wang Guofeng2ORCID,Yi Biyi1

Affiliation:

1. Zhejiang Huayun Electric Power Engineering Design Consulting Co. Ltd, Hangzhou 310014, China

2. College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, China

Abstract

Due to the existence of nonlinear constraints, it is difficult to solve the power flow directly. This paper proposes a microgrid optimal scheduling strategy using second-order cone relaxation method to realize linear transformation, so as to minimize the total cost of the microgrid. Firstly, a microgrid system model of electricity-gas integrated energy is established, and the nonlinear constraints of branch power flow are transformed by the second-order cone relaxation method. Then, based on the microgrid model, the application conditions of the second-order cone relaxation transformation method are studied, and the optimal scheduling strategy with the total cost of microgrid as the objective function is proposed. In addition, in the case that the microgrid system does not meet the application conditions of second-order cone programming, the optimization problem is solved by increasing the line loss. Finally, an example is given to verify the effectiveness of the proposed method.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3