A Deep Neural Network-Based Optimal Scheduling Decision-Making Method for Microgrids

Author:

Chen Fei1,Wang Zhiyang2ORCID,He Yu2

Affiliation:

1. China Southern Power Grid Guizhou Power Grid Co., Ltd., Guiyang 550003, China

2. School of Electrical Engineering, Guizhou University, Guiyang 550025, China

Abstract

With the rapid growth in the proportion of renewable energy access and the structural complexity of distributed energy systems, traditional microgrid (MG) scheduling methods that rely on mathematical optimization models and expert experience are facing significant challenges. Therefore, it is essential to present a novel scheduling technique with high intelligence and fast decision-making capacity to realize MGs’ automatic operation and regulation. This paper proposes an optimal scheduling decision-making method for MGs based on deep neural networks (DNN). Firstly, a typical mathematical scheduling model used for MG operation is introduced, and the limitations of current methods are analyzed. Then, a two-stage optimal scheduling framework comprising day-ahead and intra-day stages is presented. The day-ahead part is solved by mixed integer linear programming (MILP), and the intra-day part uses a convolutional neural network (CNN)—bidirectional long short-term memory (Bi LSTM) for high-speed rolling decision making, with the outputs adjusted by a power correction balance algorithm. Finally, the validity of the model and algorithm of this paper are verified by arithmetic case analysis.

Funder

Science and Technology Foundation of Guizhou Province

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3