A Novel Study of Synthesis and Experimental Investigation on Hybrid Biocomposites for Biomedical Orthopedic Application

Author:

Rao C. V. Subba1,Sabitha R.2,Murugan P.3ORCID,Rao S. Rama4ORCID,Anitha K.2,Rao Y. Sesha1

Affiliation:

1. Department of Mechanical Engineering, QIS College of Engineering and Technology, Ongole, India

2. Department of Computer Science and Engineering, Saveetha School of Engineering, SIMATS, Chennai, 602 105 Tamil Nadu, India

3. Jimma Institute of Technology, Jimma University, Jimma, Ethiopia

4. Tirumala Engineering College, Narasaraopet, India

Abstract

In recent years the biocomposites are highly utilized in the biomedical applications, due to excellent strength as well as weight ratio. A lot of natural fibers, namely, flax, hemp, jute, kenaf, and sisal are cheaply available in colossal amount. Aim of this study, a novel approach, is executed for construction of biomedical orthopedic parts by using mixture of natural fibers. This work handled biocomposites such as flax fiber (FX), chicken feather fiber (CF), kenaf fiber (KF), and rice husk fiber (RH) effectively. From all these composites, four sets of mixed fibers with reinforcement of polylactic acid polymer used for creating orthopedic parts. The hand-lay-based methodology is undertaken for preparation of hybrid biocomposites. Parameters involved for this study are fiber types (KF + RH, RH + FX, FX + CF, and CF + KF), laminate count (2, 4, 6 and 8) infill density (30%, 60%, 90%, and 120%), and raster angle (0/60, 30/120, 50/140, and 70/160). Finding of this work is dimensional accuracy, flexural strength, and shore hardness that are analyzed by L16 orthogonal array. ANOVA statistical analysis is enhanced and enlightens the results of flexural strength and source hardness of the biocomposites. Amongst in four parameters, the fiber type parameter extremely contributes such as 40.50% in the flexural analysis. Similarly, laminate count parameter highly contributes such as 31.01% in the shore hardness analysis.

Publisher

Hindawi Limited

Subject

Polymers and Plastics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3