A Method to Determination of Lead Ions in Aqueous Samples: Ultrasound-Assisted Dispersive Liquid-Liquid Microextraction Method Based on Solidification of Floating Organic Drop and Back-Extraction Followed by FAAS

Author:

Arpa Çiğdem1ORCID,Aridaşir Itır1

Affiliation:

1. Chemistry Department, Hacettepe University, Beytepe, 06800 Ankara, Turkey

Abstract

Ultrasound-assisted dispersive liquid-liquid microextraction method based on solidification of floating organic drop and back-extraction (UA-DLLME-SFO-BE) technique was proposed for preconcentration of lead ions. In this technique, two SFODME steps are applied in sequence. The classical SFODME was applied as the first step and then the second (back-extraction) step was applied. For the classical SFODME, Pb ions were complexed with Congo red at pH 10.0 and then extracted into 1-dodecanol. After this stage, a second extraction step was performed instead of direct determination of the analyte ion in the classical method. For this purpose, the organic phase containing the extracted analyte ions is treated with 1.0 mol·L−1HNO3solution and then exposed to ultrasonication. So, the analyte ions were back-extracted into the aqueous phase. Finally, the analyte ions in the aqueous phase were determined by FAAS directly. Owing to the second extraction step, a clogging problem caused by 1-dodecanol during FAAS determination was avoided. Some parameters which affect the extraction efficiency such as pH, volume of extraction solvent, concentration of complexing agent, type, volume, and concentration of back-extraction solvent, effect of cationic surfactant addition, effect of temperature, and so on were examined. Performed experiments showed that optimum pH was 10.0, 1-dodecanol extraction solvent volume was 75 μL, back-extraction solvent was 500 μL, 1.0 mol·L−1HNO3, extraction time was 4 min, and extraction temperature was 40°C. Under optimum conditions, the enhancement factor, limit of detection, limit of quantification, and relative standard deviation were calculated as 81, 1.9 μg·L−1, 6.4 μg·L−1, and 3.4% (for 25 μg·L−1Pb2+), respectively.

Publisher

Hindawi Limited

Subject

Computer Science Applications,Instrumentation,General Chemical Engineering,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3