Affiliation:
1. Department of Industrial Engineering and Systems Management, Feng Chia University, Taichung 40724, Taiwan
2. Faculty of Information Technology, University of Transport Technology, Hanoi 100000, Vietnam
Abstract
Forecasting short-term traffic flow is a key task of intelligent transportation systems, which can influence the traveler behaviors and reduce traffic congestion, fuel consumption, and accident risks. This paper proposes a fuzzy wavelet neural network (FWNN) trained by improved biogeography-based optimization (BBO) algorithm for forecasting short-term traffic flow using past traffic data. The original BBO is enhanced by the ring topology and Powell’s method to advance the exploration capability and increase the convergence speed. Our presented approach combines the strengths of fuzzy logic, wavelet transform, neural network, and the heuristic algorithm to detect the trends and patterns of transportation data and thus has been successfully applied to transport forecasting. Other different forecasting methods, including ANN-based model, FWNN-based model, and WNN-based model, are also developed to validate the proposed approach. In order to make the comparisons across different methods, the performance evaluation is based on root-mean-squared error (RMSE), mean absolute percentage error (MAPE), and correlation coefficient (R). The performance indexes show that the FWNN model achieves lower RMSE and MAPE, as well as higherR, indicating that the FWNN model is a better predictor.
Funder
Ministry of Science and Technology, Taiwan
Subject
General Mathematics,General Medicine,General Neuroscience,General Computer Science
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献