Affiliation:
1. Department of Civil Engineering, Room 301C, CE/TTI Tower, Texas A&M University, College Station, TX 77843-3135
Abstract
Traffic volume is one of the fundamental types of data that have been used for the traffic control and planning process. Forecasting needs and efforts for various applications will be increased with the deployment of advanced traffic management systems. With the importance of the short-term traffic forecasting task, numerous techniques have been utilized to improve its accuracy. The use of the subset autoregressive integrated moving average (ARIMA) model for short-term traffic volume forecasting is investigated. A typical time-series modeling procedure was employed for this study. Model identification was carried out with Akaike’s information criterion. The conditional maximum likelihood method was used for the parameter estimation process. Two white noise tests were applied for model verification. From the analysis results, four time-series models in different categories were identified and used for the one-step-ahead forecasting task. The performance of each model was evaluated using two statistical error estimates. Results showed that all time-series models performed well with reasonable accuracy. However, it was observed that the subset ARIMA model gave more stable and accurate results than other time-series models, especially a full ARIMA model. It is believed that the use of a subset ARIMA model could increase the accuracy of the short-term forecasting task within time-series models.
Subject
Mechanical Engineering,Civil and Structural Engineering
Cited by
296 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献