A Monte Carlo Assessment of the Effect of Different Ventilation Strategies to Mitigate the COVID-19 Contagion Risk in Educational Buildings

Author:

Albertin Riccardo1ORCID,Pernigotto Giovanni1ORCID,Gasparella Andrea1ORCID

Affiliation:

1. Faculty of Engineering, Free University of Bozen-Bolzano, Piazza Università 5, 39100 Bolzano, Italy

Abstract

The COVID-19 pandemic outbreak has increased the general awareness of the importance of proper ventilation in the indoor environment to reduce the contagion risk. In particular, attention has been paid to specific categories of buildings, such as schools, due to two factors: (1) high occupancy density and (2) the presence of young and sometimes more susceptible people. Despite the high level of alertness towards the ventilation of classrooms, robust analyses of the effectiveness of the different strategies to mitigate the contagion risk have been difficult to perform. Indeed, the COVID-19 pandemic is still ongoing, and many factors, such as the presence of multiple viral strains, use of facial masks, progression in vaccination, and installation of air purifiers and other sanitization devices, make it difficult to fully quantify the impact of room ventilation by simply analysing available monitoring data. Moreover, mitigation strategies related to ventilation are often dynamic, increasing the complexity of the problem to assess. In this framework, this work proposes a new Monte Carlo method integrated with building performance simulation to evaluate the number of infected occupants under different scenarios, considering also the dynamic boundary conditions. The described approach has been applied to a case study classroom at the Free University of Bozen-Bolzano, Italy, analysing almost 100 different scenarios and discussing the effectiveness of different ventilation strategies traditionally adopted to ensure suitable IAQ according to CO2 concentration limits. Results highlight the importance of combining different solutions (e.g., mixed-mode ventilation and facial masks) to limit the risk for both students and lecturers.

Funder

Open Access Publishing Fund of the Free University of Bozen-Bolzano

Publisher

Hindawi Limited

Subject

Public Health, Environmental and Occupational Health,Building and Construction,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3