Statistical analysis of infectious disease transmission risk based on exhaled respiratory droplet trajectory distribution

Author:

Cavazzuti Marco1ORCID,Tartarini Paolo2ORCID

Affiliation:

1. Dipartimento di Scienze e Metodi dell'Ingegneria, Università degli Studi di Modena e Reggio Emilia 1 , via Giovanni Amendola 2, Reggio Emilia 42122, Italy

2. Dipartimento di Ingegneria “Enzo Ferrari,” Università degli Studi di Modena e Reggio Emilia 2 , via Pietro Vivarelli 10, Modena 41125, Italy

Abstract

In the present work, the risk of infectious disease transmission is evaluated based on a statistical analysis of respiratory droplet trajectory distribution. An analytical model recently developed by the authors allows the prediction of the trajectory and evaporation rate of exhaled droplets. The model is used to collect data from a sampling set of more than twenty thousand droplets distributed over a range of diameters from 0.1 μm to 1 mm for different respiratory scenarios. The analytical tool implements the governing equations of droplet transport, evaporation, energy balance, and chemical composition. It also features a two-dimensional unsteady empirical model of respiratory cloud including momentum dissipation and buoyancy. A discrete random walk approach to simulate the droplet turbulent dispersion, and the randomization of the droplet release within the exhalation period and the mouth cross section area complete the model enabling statistical analyses to be rightly performed. With the due boundary conditions, different types of respiratory events can be modeled easily. With additional information on the exhaled droplet size distribution and viral content, spatial maps of virus concentration are derived and associated with the risk of infectious disease transmission being able to discriminate between various transmission routes such as fomite, airborne, or direct inhalation. Different scenarios are presented including mouth breathing, nose breathing, speaking, coughing, and sneezing. The fluid dynamic behavior of respiratory droplets is explored on a size basis, and the role of ventilation discussed. Risk evaluation provides useful information for a knowledgeable discussion on the prevention needs and means from case to case.

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3