Path Planning with Obstacle Avoidance Based on Normalized R-Functions

Author:

Tao Songqiao1ORCID,Tan Juan1

Affiliation:

1. School of Mechanic and Electronic Engineering, Wuhan Technical College of Communications, Wuhan 430065, China

Abstract

Existing methods for path planning with obstacle avoidance need to check having the interference between a moving part and an obstacle at iteration and even to calculate their shortest distance in the case of given motion parameters. Besides, the tasks like collision-checking and minimum-distance calculating themselves are complicated and time-consuming. Rigorous mathematical analysis might be a practical way for dealing with the above-mentioned problems. An R-function is a real-valued function whose properties are fully determined by corresponding attributes of their parameters, which is usually applied to express a geometrical object. Thus, a signed distance function based on R-functions is created to represent whether two objects intervene and their level of intervention or separation. As the signed function is continuous and differentiable, the gradient information of the objective function guides a moving part to avoid its obstacles and to approach its target position rapidly. Therefore, a path planning approach with obstacle avoidance based on normalized R-functions is proposed in this paper. A discrete convex hull approach is adopted to solve the problem that R-function is inappropriate to represent a geometric object with some curves or surfaces, and pendent points and edges are generated in Boolean operations. Besides, a normalized approach ensures accuracy calculation of signed distance function. Experimental results have shown that the presented approach is a feasible way for path planning with obstacle avoidance.

Funder

Wuhan Technical College of Communication

Publisher

Hindawi Limited

Subject

General Computer Science,Control and Systems Engineering

Cited by 150 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3