Development of a Frequency-Adjustable Tuned Mass Damper (FATMD) for Structural Vibration Control

Author:

Gao Huaguo1,Wang Congbao1,Huang Chen2,Shi Wenlong3,Huo Linsheng2ORCID

Affiliation:

1. School of Civil Engineering, University of Science and Technology Liaoning, Anshan, Liaoning 114051, China

2. State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China

3. Department of Civil Engineering, Shanghai University, Shanghai 200444, China

Abstract

The tuned mass damper (TMD) can be applied to suppress earthquake, wind, and pedestrian- and machine-induced vibration in factory buildings or large span structures. However, the traditional TMD with a fixed frequency will not be able to perform effectively against the frequency variations in multiple hazards. This paper proposed a frequency-adjustable tuned mass damper (FATMD) to solve this limitation of current TMD. The FATMD presented in this paper is composed of a simple assembly consisting of a supported beam with a mass, in which the frequency of the FATMD is changed by adjusting the span of the beam. The kinematic equation of a single degree of freedom (SDOF) structure installed with an FATMD is established to analyze the effect of the damping ratio, mass ratio, and stiffness on the vibration damping. The fundamental frequency of the FATMD at different spans is verified by simulation and experiments. Forced vibration experiments with different excitation frequencies are also conducted to verify the performance of the FATMD. The results show that the proposed FATMD can effectively suppress the vertical vibration of structures at different excitation frequencies, including frequencies at a range higher than what a traditional TMD may not be able to suppress. Additionally, the proposed FATMD is applied to a long-span pedestrian bridge which vibrates frequently due to the walking of pedestrians, the running of escalators, and earthquakes. The numerical results indicate that the FATMD can effectively reduce the vertical vibration of the pedestrian bridge under the excitations of pedestrians, escalators, and earthquakes.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3