Comparative Experimental Study on Strength Properties of Red Clay Modified by Cement and Industrial Solid Waste Powder

Author:

Lu Xianlong1ORCID,Yu Qiang1,Xu Jiayu2,Yue Bing3,Sheng Mingqiang12ORCID

Affiliation:

1. School of Civil and Environmental Engineering, Nanchang Institute of Science and Technology, Nanchang 330108, China

2. School of Infrastructure Engineering, Nanchang University, Nanchang 330031, China

3. School of Engineering and Technology, China University of Geosciences (Beijing), Beijing 100083, China

Abstract

Because of the existence of clay minerals such as montmorillonite in red clay, the strength of red clay decreases significantly as water content increases. This study aims to improve the strength of red clay by using three different kinds of industrial solid waste powder, i.e., steel slag (SS) powder, fly ash (FA), and ground-granulated blast furnace slag (GGBS). At the same time, the ordinary Portland cement (OPC) was selected as a comparison of the improvement effect on the strength of red clay modified by the aforementioned industrial solid waste powder. The properties of the red clay and the industrial solid waste powder were documented comprehensively. The unconfined compressive strength (UCS) tests were conducted on the specimens of the red clay and the red clay modified by the OPC, SS, FA, and GGBS, which had been cured for 3, 7, and 21 days at a temperature of 25°C, respectively. The results showed that the strength of red clay can be significantly improved by the three kinds of industrial solid waste powder. After a 21-day curing period, the experimental results showed that the UCS of the red clay modified by 7% SS, 5% FA, and 5% GGBS increased by 252%, 131%, and 140% compared to that of the red clay without modification. However, the modification effects of the SS, FA, and GGBS on the red clay were generally inferior to that of the OPC. By observing the microstructures of the modified clay, the mechanism of industrial solid waste powder and cement improving the strength of the red clay was analyzed. The findings in this study can provide a reference for improving subgrade strength by a soil-modification method in road constructions.

Funder

Education Department of Jiangxi Province

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3