Formal Specification and Validation of a Localized Algorithm for Segregation of Critical/Noncritical Nodes in MAHSNs

Author:

Alnuem Mohammed1,Zafar Nazir Ahmad2,Imran Muhammad1,Ullah Sana1,Fayed Mahmoud1

Affiliation:

1. College of Computer and Information Sciences, King Saud University, Riyadh 11543, Saudi Arabia

2. Department of Computer Science, King Faisal University, Al-Hassa 31982, Saudi Arabia

Abstract

Timely segregation of critical/noncritical nodes is extremely crucial in mobile ad hoc and sensor networks. Most of the existing segregation schemes are centralized and require maintaining network wide information, which may not be feasible in large-scale dynamic networks. Moreover, these schemes lack rigorous validation and entirely rely on simulations. We present a localized algorithm for segregation of critical/noncritical nodes (LASCNN) to the network connectivity. LASCNN establishes and maintains a k-hop connection list and marks a node as critical if its k-hop neighbours become disconnected without the node and noncritical otherwise. A noncritical node with more than one connection is marked as intermediate and leaf noncritical otherwise. We use both formal and nonformal techniques for verification and validation of functional and nonfunctional properties. First, we model MAHSN as a dynamic graph and transform LASCNN to equivalent formal specification using Z notation. After analysing and validating the specification through Z eves tool, we simulate LASCNN specification to quantitatively demonstrate its efficiency. Simulation experiments demonstrate that the performance of LASCNN is scalable and is quite competitive compared to centralized scheme with global information. The accuracy of LASCNN in determining critical nodes is 87% (1-hop) and 93% (2-hop) and of noncritical nodes the accuracy is 91% (1-hop) and 93% (2-hop).

Publisher

SAGE Publications

Subject

Computer Networks and Communications,General Engineering

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3