Applying improved particle swarm optimization for dynamic service composition focusing on quality of service evaluations under hybrid networks

Author:

Gao Honghao12ORCID,Zhang Kang2,Yang Jianhua3,Wu Fangguo4,Liu Hongsheng5

Affiliation:

1. Computing Center, Shanghai University, Shanghai, P.R. China

2. School of Computer Engineering and Science, Shanghai University, Shanghai, P.R. China

3. The Sci-Tech Academy, Zhejiang University, Hangzhou, P.R. China

4. Hithink RoyalFlush Information Network Co., Ltd, Hangzhou, P.R. China

5. Fushun Power Supply Branch, State Grid Liaoning Electric Power Supply Co., Ltd, Fushun, P.R. China

Abstract

Hybrid services use different protocols on various networks, such as WIFI networks, Bluetooth networks, 5G communications systems, and wireless sensor networks. Hybrid service compositions can be varied, representing an effective method of integrating into wireless scenarios context-aware applications that can sense mobility via changes in user location and combining services to support target functions. In this article, improved particle swarm optimization is introduced into the quality service evaluation of dynamic service composition to meet the mobility requirements of hybrid networks. First, this work classifies hybrid services into different task groups to generate candidate sets and then interface matching is used to compare the operations of candidate services with user requirements to select the appropriate services. Second, the service composition is determined by the particle swarm optimization simulation process, which aims to identify an optimal plan based on the calculated value from quality of service. Third, considering a change of service repository, when the quality of a composite service is lower than a predefined threshold, the local greedy algorithm and global reconfiguration method are adopted to dynamically restructure composite services. Finally, a set of experiments is conducted to demonstrate the effectiveness of the proposed method for determining the dynamic service composition, particularly when the scale of hybrid services is large. The method provides a technical reference for engineering practice that will fulfill mobile computing needs.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Computer Networks and Communications,General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3