Seismic Damage Prediction Method for Lining Structures Based on the SEDR Principle

Author:

Zheng Q.1,Xin C. L.23ORCID,Shen Y. S.14ORCID,Huang Z. M.3,Gao B.14

Affiliation:

1. Key Laboratory of Transportation Tunnel Engineering, Ministry of Education, School of Civil Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China

2. State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu, Sichuan, China

3. College of Environment and Civil Engineering, Chengdu University of Technology, Chengdu, Sichuan, China

4. National Engineering Laboratory for Technology of Geological Disaster Prevention in Land Transportation, Southwest Jiaotong University, Chengdu, Sichuan, China

Abstract

The safety and stability of lining structures are core concerns of tunnel and underground engineering. It is crucial to determine whether a lining structure would crack and which direction the crack would expand with seismic excitation. In previous literature, the principle based on stress and strain has been widely used to predict the seismic damage of lining structures, whereas it cannot specify the cracking modes. Taking account of that deficiency, this paper introduces the strain energy density ratio (SEDR) principle and proposes a seismic damage prediction method for lining structures, which can precisely predict the crack positions and expansion directions. Moreover, numerical simulations of the typical seismic damage sections of two tunnels in the Great Wenchuan Earthquake and a calculating example of the theoretical equations are conducted to verify the proposed method. In summary, the numerical simulation results show that the arch springing cracks first, and the invert cracks next; then the cracks expand to the spandrel, and finally, they form oblique cracks, annular cracks, and longitudinal cracks, whose positions and patterns are in accordance with the field investigation results. In terms of the calculating example results, the obtained two-fold SEDR and cracking angle θ are 1.87 and −6.28°, respectively, which are consistent with the numerical simulation results. Therefore, one can see that the proposed seismic damage prediction method based on the SEDR principle is quite accurate. This method can be used to predict the seismic damage of lining structures and provide a reference for the research of the damage mechanism of tunnels.

Funder

Department of Science and Technology of Sichuan Province

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3