Pozzolanic Reaction in Clayey Soils for Stabilization Purposes: A Classical Overview of Sustainable Transport Geotechnics

Author:

Onyelowe Kennedy C.12ORCID,Onyia Michael E.3ORCID,Bui Van Duc2ORCID,Baykara Haci4ORCID,Ugwu Hyginus U.5

Affiliation:

1. Department of Mechanical and Civil Engineering, Faculty of Engineering, Kampala International University Western Campus, Ishaka, Uganda

2. Research Group of Geotechnical Engineering, Construction Materials and Sustainability, Hanoi University of Mining and Geology, Hanoi, Vietnam

3. Department of Civil Engineering, Faculty of Engineering, University of Nigeria, Nsukka, Nigeria

4. National Laboratory of Thermal Testing of Building Materials, Escuela Superior Politecnica Del Litoral (ESPOL), Guayaquil, Ecuador

5. Department of Mechanical Engineering, Michael Okpara University of Agriculture, Umudike P. M. B. 7267, Umuahia 440109, Abia State, Nigeria

Abstract

Problematic soil stabilization processes involve the application of binders to improve the engineering properties of the soil. This is done to change the undesirable properties of these soils to meet basic design standards. However, very little attention has been given to the reactive phase of soil stabilization. This phase is the most important in every stabilization protocol because it embodies the reactions that lead to the bonding of the dispersed particles of clayey soil. Hence, this reactive phase is reviewed. When clayey soils which make up the greatest fraction of expansive soil come in contact with moisture, they experience volume changes due to adsorbed moisture that forms films of double diffused layer on the particles. When this happens, the clayey particles disperse and float, increasing the pore spaces or voids that exist in the soil mass. Stabilizations of these soils are conducted to close the gaps between the dispersed clayey soil particles. This is achieved by mixing additives that will release calcium, aluminum, silicon, etc., in the presence of adsorbed moisture, and a hydration reaction occurs. This is followed by the displacement reaction based on the metallic order in the electrochemical series. This causes a calcination reaction, a process whereby calcium displaces the hydrogen ions of the dipole adsorbed moisture and displaces the sodium ion responsible for the swelling potential of clayey soils. These whole processes lead to a pozzolanic reaction, which finally forms calcium alumina-silica hydrate. This formation is responsible for soil stabilization.

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3