Simulation Optimization for the Multihoist Scheduling Problem

Author:

Pérez-Rodríguez Ricardo1ORCID

Affiliation:

1. CONACYT-UAQ, Autonomous University of Queretaro, Faculty of Engineering, Centro Universitario, Cerro de las Campanas s/n, 76010, Santiago de Queretaro, Mexico

Abstract

Although the Multihoist Scheduling Problem (MHSP) can be detailed as a job-shop configuration, the MHSP has additional constraints. Such constraints increase the difficulty and complexity of the schedule. Operation conditions in chemical processes are certainly different from other types of processes. Therefore, in order to model the real-world environment on a chemical production process, a simulation model is built and it emulates the feasibility requirements of such a production system. The results of the model, i.e., the makespan and the workload of the most loaded tank, are necessary for providing insights about which schedule on the shop floor should be implemented. A new biobjective optimization method is proposed, and it uses the results mentioned above in order to build new scenarios for the MHSP and to solve the aforementioned conflicting objectives. Various numerical experiments are shown to illustrate the performance of this new experimental technique, i.e., the simulation optimization approach. Based on the results, the proposed scheme tackles the inconvenience of the metaheuristics, i.e., lack of diversity of the solutions and poor ability of exploitation. In addition, the optimization approach is able to identify the best solutions by a distance-based ranking model and the solutions located in the first Pareto-front layer contributes to improve the search process of the aforementioned scheme, against other algorithms used in the comparison.

Publisher

Hindawi Limited

Subject

Artificial Intelligence,Computer Networks and Communications,Computer Science Applications,Civil and Structural Engineering,Computational Mechanics

Reference67 articles.

1. Improving the productivity of electroplating lines by changing the layout of the tanks;C. Varnier

2. Queue Preparation in the Dynamic Hoist Scheduling Problem

3. A Unified PSO-based method for multi-hoist scheduling in advanced Galvanic plants;D. Ramin;CoDIT,2020

4. A disjunctive graph and shifting bottleneck heuristics for multi hoists scheduling problem

5. Optimization with constraint logic programming: the hoist scheduling problem solved with various solvers;P. Baptiste,1993

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3