Freeze-Thaw Performance of Silt Sand Treated with Lignin

Author:

Zhu Fu1ORCID,Li Jiayu1,Jiang Wenhao1,Zhang Shuang1ORCID,Dong Weizhi1ORCID

Affiliation:

1. School of Transportation Science and Engineering, Jilin Jianzhu University, Changchun 130118, China

Abstract

In cold regions, freeze-thaw action poses a significant hazard to road engineering. In order to avoid the adverse effects of inorganic materials on soil modification, we applied lignin, which is an environmentally friendly and organic polymer, to improve the silt sand from cold regions. The significance of this study is to facilitate the better application of lignin. The macroscopic engineering properties of the soil showed that, before freeze-thaw, as the lignin content increased, thermal conductivity and permeability decreased, pH first increased rapidly and then stabilized between 10 and 11, and dynamic resilient modulus first increased then decreased; after freeze-thaw, as lignin content increased, thermal conductivity and permeability decreased, and dynamic resilient modulus first increased then decreased. The freeze-thaw action reduced the thermal conductivity and dynamic resilient modulus of silt sand treated with lignin and increased its permeability. The test results of soil microstructure indicated that, before freeze-thaw, the silt sand and silt sand treated with lignin were structurally compact; after freeze-thaw, the silt sand showed numerous cracks and pores and had a loose soil structure, whereas the silt sand treated with lignin showed fewer cracks and pores, and its soil structure was more compact under the encapsulation and filling action of cementitious materials. No new chemical elements, mineral components, or functional groups were produced when lignin was mixed with silt sand. The mechanism by which lignin improved the macroengineering properties of silt sand involved the cementitious material produced by the interaction between lignin and soil minerals, which encapsulated the soil particles and filled the interparticle pores. Research results can provide a theoretical reference for engineering application of lignin in cold regions.

Funder

Education Department of Jilin Province

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3