An Eco-Sustainable Stabilization of Clayey Road Subgrades by Lignin Treatment: An Overview and a Comparative Experimental Investigation

Author:

Vaiana RosolinoORCID,Oliviero Rossi CesareORCID,Perri GiusiORCID

Abstract

Subgrade conditions significantly affect functionality of the road pavement during its service life. Among the different stabilization techniques for upgrading poorly performing in-situ soil subgrades, an economically attractive example involves the use of waste materials, such as lignin. A deep bibliographic analysis of previous studies is carried out in the first section of this paper. The literature review suggests that use of lignin as a stabilizing agent of road subgrade soils is not completely consolidated. In addition, this study reports an investigation on the strength and performance characteristics of a lignin-treated clayey soil. Several experimental tests were carried out on both the untreated and lignin-treated soils in order to shed some light on different aspects with limited knowledge available, such as the behaviour of the stabilised soil in specific conditions (e.g., the presence of water). Finally, the test results are discussed and compared with those obtained when the same soil is treated with lime, which is more widely used. The most relevant finding is the poor ability of lignin to upgrade the bearing capacity of the soil in wet conditions compared to lime; on the contrary, the presence of lignin helped in controlling the swelling potential of this type of soil.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference81 articles.

1. Recommended Practice for Stabilization of Subgrade Soils and Base Materials

2. Use of Unbound Materials for Sustainable Road Infrastructures

3. Stabilization of Soft Clay Subgrades in Virginia Phase I Laboratory Study;Geiman,2005

4. Stabilization of Fine-Grained Soil for Road and Airfield Construction. Special Report 86-21;Danyluk,1986

5. Soil Stabilization for Roadways and Airfields;Little,1987

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3