Online Missing Data Imputation Using Virtual Temporal Neighbor in Wireless Sensor Networks

Author:

Deng Yulong12ORCID,Han Chong12ORCID,Guo Jian12ORCID,Li Linguo3ORCID,Sun Lijuan12ORCID

Affiliation:

1. College of Computer, Nanjing University of Posts and Telecommunications, Nanjing 210003, China

2. Jiangsu High Technology Research Key Laboratory for Wireless Sensor Networks, Nanjing University of Posts and Telecommunications, Nanjing 210003, China

3. College of Information Engineering, Fuyang Normal University, Fuyang 236041, China

Abstract

A wireless sensor network (WSN) is one of the most typical applications of the Internet of Things (IoT). Missing values exist in the sensor data streams unavoidably because of the way WSNs work and the environments they are deployed in. In most cases, imputing missing values is the universally adopted approach before making further data processing. There are different ways to implement it, among which the exploitation of correlation information hidden in the sensor data interests many researchers, and lots of results have emerged. Researching in the same way, in this paper, we propose VTN imputation, an online missing data imputation algorithm based on virtual temporal neighbors. Firstly, the virtual temporal neighbor (VTN) in the sensor data stream is defined, and the calculation method is given. Next, the VTN imputation algorithm, which applies VTN to make estimates for missing values by regression is presented. Finally, we make experiments to evaluate the performance of imputing accuracy and computation time for our algorithm on three different real sensor datasets. The experiment results show that the VTN imputation algorithm benefited from the fuller exploitation of the correlation in sensor data and obtained better accuracy of imputation and acceptable processing time in the real applications of WSNs.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3