UIFSS: An aid for univariate data with large missing gap in IoT applications

Author:

Venkata Vidyalakshmi Guggilam1,Gopikrishnan S.1

Affiliation:

1. School of Computer Science and Engineering, VIT-AP University, Amaravathi, Andhra Pradesh, India

Abstract

In the realm of Internet of Things (IoT) sensor data, missing patterns often occur due to sensor glitches and communication problems. Conventional missing data imputation methods struggle to handle multiple missing patterns, as they fail to fully leverage the available data as well as partially imputed data. To address this challenge, we propose a novel approach called Univariate data Imputation using Fast Similarity Search (UIFSS). The proposed method solved the missing data problem of IoT data using fast similarity search that can suits different patterns of missingness. Exploring similarities between data elements, a problem known as all-pairs-similarity-search, has been extensively studied in fields like text analysis. Surprisingly, applying this concept to time series subsequences hasn’t seen much progress, likely due to the complexity of the task. Even for moderately sized datasets, the traditional approach can take a long time, and common techniques to speed it up only help a bit. Notably, for very large datasets, our algorithm can be easily adapted to produce high-quality approximate results quickly. UIFSS consists of two core components:Sensor sorting with Similar Node Clustering (SSNC) and Imputation Estimator using Fast Similarity Search(IEFSS). The SSNC, encompassing missing sensor sorting depending on their entropy to guide the imputation process. Subsequently, IEFSS uses global similar sensors and captures local region volatility, prioritizing data preservation while improving accuracy through z-normalized query based similarity search. Through experiments on simulated and bench mark datasets, UIFSS outperforms existing methods across various missing patterns. This approach offers a promising solution for handling missing IoT sensor data and with improved imputation accuracy.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

Reference37 articles.

1. Nearest neighborimputation algorithms: a critical evaluation;Lorenzo Beretta;BMC MedicalInformatics and Decision Making,2016

2. Review of data preprocessingtechniques in data mining;Suad Alasadi;Journal of Engineering and AppliedSciences,2017

3. Roderick Little J.A. , Donald Rubin B. Statistical analysis withmissing data, John Wiley & Sons, 793 (2019).

4. Iterative robust semi-supervised missing data imputation;Nikos Fazakis;IEEE Access,2020

5. Missing value imputation: a reviewand analysis of the literature (2006–2017);Wei-Chao Lin;ArtificialIntelligence Review,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3