Estimation of Wheelset Natural Vibration Characteristics Based on Transfer Matrix Method with Various Elastic Beam Models

Author:

Liu Pengfei12ORCID,Liu Hongjun2ORCID,Wu Qing3ORCID

Affiliation:

1. State Key Laboratory of Mechanical Behavior and System Safety of Traffic Engineering Structures, Shijiazhuang Tiedao University, Shijiazhuang 050043, China

2. School of Mechanical Engineering, Shijiazhuang Tiedao University, Shijiazhuang 050043, China

3. Centre for Railway Engineering, Central Queensland University, Rockhampton, Australia

Abstract

The elastic vibration of the wheelset is a potential factor inducing wheel-rail defects. It is important to understand the natural vibration characteristics of the flexible wheelset for slowing down the defect growth. To estimate the elastic free vibration of the railway wheelset with the multidiameter axle, the transfer matrix method (TMM) is applied. The transfer matrices of four types of elastic beam models are derived including the Euler–Bernoulli beam, Timoshenko beam, elastic beam without mass and shearing stiffness, and massless elastic beam with shearing stiffness. For each type, the simplified model and detailed models of the flexible wheelset are developed. Both bending and torsional modes are compared with that of the finite element (FE) model. For the wheelset bending modes, if the wheel axle is modelled as the Euler–Bernoulli beam and Timoshenko beam, the natural frequencies can be reflected accurately, especially for the latter one. Due to the lower solving accuracy, the massless beam models are not applicable for the analysis of natural characteristics of the wheelset. The increase of the dividing segment number of the flexible axle is helpful to improve the modal solving accuracy, while the computation effort is almost kept in the same level. For the torsional vibration mode, it mainly depends on the axle torsional stiffness and wheel inertia rather than axle torsional inertia.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Reference27 articles.

1. Review on rail corrugation studies

2. Research progress on wheel polygons of rail vehicles;H. Y. Zhu;Journal of Traffic and Transportation Engineering,2020

3. Wagon–track modelling and parametric study on rail corrugation initiation due to wheel stick-slip process on curved track

4. Theoretical study on rail corrugation on curved track of metro systems;G. Shen;Journal of Tongji University (Natural Science),2011

5. A finite element study on rail corrugation based on saturated creep force-induced self-excited vibration of a wheelset–track system

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3