Performance Tuning of Coordinated Active Traffic Control Algorithm: Simultaneously Improving Corridor Safety and Mobility Performances

Author:

Fang Jie12

Affiliation:

1. College of Civil Engineering, Fuzhou University, Fuzhou, Fujian 350108, China

2. Department of Civil and Environmental Engineering, University of AB, 3-019 NREF, Edmonton, Alberta, Canada T6G 2W2

Abstract

Proactive traffic control based on macroscopic traffic flow model is an innovative approach to active traffic management. An online, model predictive control (MPC) based active traffic control algorithm, DynaTAM, is proposed to implement integrated control through ramp metering (RM) and variable speed limit (VSL). DynaTAM predicts traffic states to anticipate incoming traffic congestion and to provide control plan recommendations for optimizing the network traffic conditions. However, as with other sophisticated prediction-based control algorithms, a system fine-tuning procedure is required for DynaTAM. In this study, two aspects will be addressed to further improve system performance. First, the control algorithm is evaluated to find the correlations between the prediction horizon length and the controlled system performance to suggest the most efficient prediction horizon length for the control algorithm. Second, safety considerations are quantitatively incorporated into the control algorithm. The control algorithm optimizes the traffic network targeting the cost reductions achieved by both improved mobility and reduced crash risk. A field-data-based simulation study is conducted to evaluate the system performance within various parameters and to determine the most suitable algorithm parameters. Optimized by the refined DynaTAM algorithm, the targeted area shows significant improvements in terms of both traffic safety and mobility.

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A macro-microscopic traffic flow data-driven optimal control strategy for freeway;Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering;2024-03-21

2. A Density-Based Ramp Metering Model Considering Multilane Context in Urban Expressways;Mathematical Problems in Engineering;2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3